Q.6

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- 1st / 2nd • EXAMINATION - SUMMER 2013

Subject Code: Maths-II Date: 05-06-2013 Subject Name: 110009 Time: 02:30 pm - 05:30 pm**Total Marks: 70 Instructions:** 1. Attempt any five questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. (a Let u = (4,1,2,3) and v = (0,3,8,-2). Evaluate following as directed. Q.1 04 1. Find the norm of u + v. 2. Find the Euclidean inner product of u and v. 3. Find the Euclidean distance between u and v. 4. Find 2u - 3v. **(b)** Find the inverse of $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$. 05 (c) If $A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{bmatrix}$, Prove that $A^2 - 13A + 12 = 0$. 05 Q.2(a) Define symmetric and skew symmetric matrix. Express $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ as the 07 sum of the symmetric and the skew symmetric matrix. **(b)** Determine whether W= $\{(a,b,c) / a^2 + b^2 < 1\}$ is a subspace of \mathbb{R}^3 . 03 (c) Show that the set of vectors $\{(2, 1, 1), (1, 2, 2), (1, 1, 1)\}$ is linearly independent 04 in R^3 . Find the eigenvalues and eigenvectors of $A = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$. 07 Q.3(a) (b) Find the least square solution of the linear system Ax = b given by 07 $x_1 - x_2 = 4$, $3x_1 + 2x_2 = 1$, $-2x_1 + 4x_2 = 3$ and find the orthogonal projection of b on the column space of A. (a) Define linear transformation. Find which of the following function are linear Q.4 07 transformations. 1. $T: R^3 \to R^3$, Defined by $T(x, y, z) = (x^2, y, x + y)$. 2. $T: R^2 \to R^2$, Defined by T(x, y) = (x, -y). Let R³ have the Euclidean inner product. Use the Gram-Schidt process to **(b)** 07 transform the basis $S = \{ (1, 0, -1), (2, 1, 1), (0, -1, 3) \text{ into an} \}$ orthonormal basis. 0.5 (a) Let V be the set of all positive real number with the operations x + y = x y and **07** $k x = x^{k}$, $k \in \mathbb{R}$. Show that the set V is a vector space. **(b)** Let $v_1 = (1, 2, 1)$, $v_2 = (2, 9, 0)$ and $v_3 = (3, 3, 4)$ **07**

1. Show that the set $S = \{ v_1, v_2, v_3 \}$ is a basis for \mathbb{R}^3 .

2. Find the coordinate vector of v = (5, -1, 9) with respect to S.

- **Q.7** (a) Consider the basis $S = \{v_1, v_2\}$ for R^2 , where $v_1 = (-2, 1)$ and $v_2 = (1, 2)$ and Let $T : R^2 \to R^3$ be the linear transformation such that $T(v_1) = (-1, 2, 0)$ and **07** T $(v_2) = (0, -3.5)$. Find a formula for T (x_1, x_2) and use that formula to find $T(x_{1},x_{2}).$
 - (b) Define: Real inner product space. Let the vector space P2 have the inner product **07** space $< p, q > = \int_{-1}^{1} p(x)q(x) dx$ then

 - 1. Find ||p|| for p = 1, q = x. 2. Find d (p, q) if $p = x, q = x^3$.
