1

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-1st/2nd • EXAMINATION - WINTER 2013

Subject Code: 110009 Date: 17-12-2013

Subject Name: Maths-II

Time: 10:30 am – 01:30 pm Total Marks: 70

Instructions:

- 1. Attempt any five questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Solve the following system of equations using Gauss Jordan method. 05 x-y+2z-w=-1, 2x+y-2z-2w=-2 -x+2y-4z+w=1, 3x-3w=-3
 - **(b)** Find the values of l, m and n if $A = \begin{bmatrix} 0 & 2m & n \\ l & m & -n \\ l & -m & n \end{bmatrix}$ is orthogonal. **05**
 - (c) Find the rank of the matrix $\begin{bmatrix} 2 & 1 & 3 & -1 \\ 3 & -1 & 2 & 0 \\ 1 & 3 & 4 & -2 \\ 4 & -2 & 1 & 1 \end{bmatrix}$ by reducing into normal form. **04**
- **Q.2** (a) Find the inverse of $\begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$ 05
 - (b) Examine the system x-2y+z-3w=-3, -3x+y-z+2w=2, 4x+3y-3z+w=1 for consistency and solve the system if consistent.
 - (c) Determine whether the vectors (3, 1, 4), (2, -3, 5), (5, -2, 9) and (1, 4, -1) span the vector space \mathbb{R}^3 .
- **Q.3** (a) Find a basis for the subspace of R^3 spanned by the vectors (1, 0, 0), (0, 1, -1), (0, 4, -3) and (0, 2, 0).
 - (b) Find a basis for the row space of $A = \begin{bmatrix} 1 & 4 & 5 & 6 & 9 \\ 3 & -2 & 1 & 4 & -1 \\ -1 & 0 & -1 & -2 & -1 \\ 2 & 3 & 5 & 7 & 8 \end{bmatrix}$ consisting entirely the row vectors of A.
 - (c) For what values of λ the vectors $\left(\lambda, \frac{-1}{2}, \frac{-1}{2}\right)$, $\left(\frac{-1}{2}, \lambda, \frac{-1}{2}\right)$ and $\left(\frac{-1}{2}, \frac{-1}{2}, \lambda\right)$ are linearly independent.
- Q.4 (a) Consider the basis $S = \{v_1, v_2\}$ of R^2 , where $v_1 = (1, 1)$ and $v_2 = (2, 3)$. Let $T: R^2 \to P_2$ be the linear transformation such that $T(v_1) = 2 - 3x + x^2$ and $T(v_2) = 1 - x^2$. Find the formula of T(a, b).

- (b) Verify dimension theorem for the linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^3$ given by the formula T(x, y, z, w) = (4x + y 2z 3w, 2x + y + z 4w, 6x 9z + 9w)
- (c) Find the matrix of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by the formula T(x, y, z) = (x + 2y + z, 2x y, 2y + z) with respect to the basis $S = \{(1, 0, 1), (0, 1, 1), (0, 0, 1)\}.$
- Q.5 (a) Check whether the vectors p = x and $q = x^2$ of P_2 are orthogonal relative to the inner product $\langle p, q \rangle = \int_{-1}^{1} p(x)q(x) dx$ and if so, verify the Pythagorean Theorem.
 - (b) Let R^3 have the inner product $\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = x_1 y_1 + 2x_2 y_2 + 3x_3 y_3$. Use the Gram - Schmidt process to transform the set $S = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ into an orthonormal set.
 - (c) Let $S = \text{span}\{(0, 1, 0), (-4, 0, 3)\}$. Express w = (1, 1, 1) in the form $w = w_1 + w_2$ where $w_1 \in S$ and $w_2 \in S^{\perp}$.
- **Q.6** (a) Determine the algebraic and geometric multiplicity of each of the eigen values of $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{bmatrix}$
 - **(b)** Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ and hence **05** find A^4 .
 - (c) Find the non singular matrix P that diagonalizes $\begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$ 04
- Q.7 (a) Find the change of variables that reduces the quadratic form $7x^2 + 5y^2 + 6z^2 4xz 4yz$ to sum of squares.
 - (b) Find the least squares solution of the linear system of equations -2x + y = -2, x + y = 4, -x + y = 1, 2x + y = 6.
 - (c) Show that the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (3x + y, 3x + 2y) is one to one and find $T^{-1}(x, y)$
