Seat No.: Enrolment No

CHIARAT TECHNOLOGICAL UNIVERSITY

		BE - SEMESTER-1/2 (NEW) EXAMINATION - WINTER 2017	
Subj	ject	Code: 2110015 Date: 30/12/2017	
_	e: 10	Name: Vector Calculus & Linear Algebra 0:30 AM TO 01:30 PM Total Marks: 70	
111501	1.		
	1. 2.	Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Choose the appropriate answer for the following.	07
	1.	Determine whether the matrix $\begin{bmatrix} 1 & 2 & 2 \\ 0 & 0 & 1 \end{bmatrix}$ is in	
		(a) row echelon form(b) reduced row echelon form(c) row echelon form and reduced row echelon form	
	2	(d) none of these	
	4.	If $A = \begin{bmatrix} 1 & -2 \\ 3 & -1 \end{bmatrix}$ then A^{-1} is	
		(a) $\begin{bmatrix} -5 & 10 \\ -15 & 5 \end{bmatrix}$ (b) $\begin{bmatrix} -1/5 & 2/5 \\ -3/5 & 1/5 \end{bmatrix}$ (c) $\begin{bmatrix} 5 & -10 \\ 15 & -5 \end{bmatrix}$ (d) $\begin{bmatrix} 1/5 & -2/5 \\ 3/5 & -1/5 \end{bmatrix}$	
	3.	The eigen values of a matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is	
		(a)1,1 (b) -1,-1 (c) 1,-1 (d) none of these	
	4.	If $A = \begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix}$ then AB is	
		(a) $\begin{bmatrix} 1 & 1 \\ 4 & 4 \end{bmatrix}$ (b) $\begin{bmatrix} -1 & -1 \\ -4 & -4 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & -3 \\ 6 & 2 \end{bmatrix}$ (d) none of these	
	5.	If A is a matrix of an order 3×7 and rank of A is 3 then nullity of A is	
	6.	(a) 3 (b) 7 (c) 4 (d) none of these If \overline{F} is irrotational then	
	•	(a) $\nabla \overline{F} \neq \overline{0}$ (b) $\nabla \times \overline{F} = \overline{0}$ (c) $\nabla \cdot \overline{F} = 0$ (d) none of these	
	7.	$\overline{i} \times \overline{j}$ is	
		(a) \overline{k} (b) $-\overline{k}$ (c) 0 (d) none of these	
	(b)	Choose the appropriate answer for the following.	07
	1.	If $\overline{u} = (3, -2)$ and $\overline{v} = (4, 5)$ then $\langle \overline{u}, \overline{v} \rangle$ is (a) 5 (b) 0 (c) -2 (d) none of these	
	2.	Determine which of the following is linearly dependent	
	2	(a) $(1,2), (3,4)$ (b) $(-1,-2), (-3,-4)$ (c) $(2,1), (4,2)$ (d) none of these	
	3.	The system of equations $x + y = 4$ and $2x + 2y = 6$ has (a) unique solution (b) no solution (c) infinitely many solution (d) none of these	
	4.	If $A = \begin{bmatrix} 2 & 5 \\ 0 & -2 \end{bmatrix}$ then eigen values of A^2 is	
		(a) 4, 4 (b) 4, -4 (c) 2, 2 (d) none of these	
	5.	If $\overline{F} = x\overline{i} + y\overline{j} + z\overline{k}$ then $\nabla \cdot \overline{F}$ at (1,1,1) is	
	6.	(a) 0 (b) -1 (c) 3 (d) none of these If $\overline{u} = 6\overline{i} - 3\overline{j} + 2\overline{k}$ then $ \overline{u} $ is	

7. If $\overline{a} \cdot \overline{b} = 0$ then angle between \overline{a} and \overline{b} is

(a) 0 (b) 2π (c)

(a) $\sqrt{49}$ (b) $-\sqrt{49}$

(a) 0 (c) π

(c) 49

(d) none of these

(d) none of these

- **Q.2** (a) Find A^{-1} for $A = \begin{bmatrix} 0 & 1 & -1 \\ 3 & 1 & 1 \\ 1 & 2 & -1 \end{bmatrix}$, if exist. 03
 - (b) Determine whether the vector $\overline{v} = (-5, 11, -7)$ is a linear combination of the vectors $\overline{v_1} = (1, -2, 2), \ \overline{v_2} = (0, 5, 5) \text{ and } \overline{v_3} = (2, 0, 8).$
 - (c) When subjected to heat aluminium reacts with copper oxide to produce copper 07 metal and aluminium oxide according to the equation $Al_3 + CuO \rightarrow Al_2O_3 + Cu$ Using Gauss elimination method, balance the chemical equation.
- (a) Find the rank of a matrix $A = \begin{bmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{bmatrix}$. (b) Solve the system of equation by Gauss-Jordan elimination method, if exist. **Q.3** 03
 - 04 x + 4y - 3z = 0; -x - 3y + 5z = -3; 2x + 8y - 5z = 1.
 - (c) Let $V = \{(a, b): a, b \in \mathbb{R}\}$. Let $\overline{u} = (u_1, u_2)$ and $\overline{v} = (v_1, v_2)$. Define $(u_1, u_2) + (u_1, u_2)$ **07** $(v_1, v_2) = (u_1 + v_1 + 1, u_2 + v_2 + 1)$ and $c(u_1, u_2) = (cu_1 + c - 1, cu_2 + c - 1)$. Verify that V is a vector space.
- **Q.4** (a) Is $T: \mathbb{R}^2 \to \mathbb{R}$, defined by $T(x, y) = x^2 + y^2$ linear? 03 (b) Let $T: \mathbb{R}^2 \to \mathbb{R}$ be the mapping defined by $T(\overline{v}) = Av$ with $A = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$. Show 04

that *T* is one-to-one.

- (c) Fine the eigen values and eigen vectors of $A = \begin{bmatrix} 2 & 1 & 2 \\ 0 & 2 & -1 \\ 0 & 1 & 0 \end{bmatrix}$. **07**
- (a) If $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$, show that $\nabla log r = \frac{1}{r}\hat{r}$. Where \hat{r} is unit vector. (b) Find the directional derivative of $\emptyset = 4xz^3 3x^2y^2z$ at the point (2, -1, 2) in the 03 Q.5
 - 04 direction $2\overline{i} + 3\overline{j} + 6\overline{k}$.
 - (c) Let B be the basis for \mathbb{R}^3 , given by $B = \{(1, 1, 1), (-1, 1, 0), (-1, 0, 1)\}$. Apply the 07 Gram-Schmidt process to B to find an orthonormal basis for \mathbb{R}^3 .
- (a) Find constant a, b, c, so that $\overline{F} = (x + 2y + az)\overline{i} + (bx 3y z)\overline{j} + (4x + cy + az)\overline{i}$ **Q.6** 03 2z)k is irrotational.
 - (b) Determine whether $V = \mathbb{R}^2$ is an inner product space under the inner product < $\overline{u}, \overline{v} > = u_1^2 v_1^2 + u_2^2 v_2^2.$
 - **07** (c) Verify the Green's theorem in the plane for $\oint_C (y^2 dx + x^2 dy)$, where C is the triangle bounded by x = 0; x + y = 1; and y = 0.
- (a) Determine whether $\overline{v_1} = (2, 2, 2)$; $\overline{v_2} = (0, 0, 3)$ and $\overline{v_3} = (0, 1, 1)$ span the vector **Q.7** 03 space \mathbb{R}^3 .
 - (b) Consider the basis $S = {\overline{v_1}, \overline{v_2}}$ for \mathbb{R}^2 , where $\overline{v_1} = (-2, 1)$ and $\overline{v_2} = (1, 3)$ and let 04 $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation such that $T(\overline{v_1}) = (-1, 2, 0)$ and $T(\overline{v_2}) = (0, -3, 5)$. Find a formula for $T(x_1, x_2)$.
 - (c) Verify rank nullity theorem for $\begin{bmatrix} 1 & 4 & 5 & 0 & 9 \\ 3 & -2 & 1 & 4 & -1 \\ -1 & 0 & -1 & -2 & -1 \\ 2 & 3 & 5 & 7 & 8 \end{bmatrix}$ **07**