GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER 1st / 2nd EXAMINATION (NEW SYLLABUS) - SUMMER - 2017

Subject Code: 2110014 Date:01/06/2017

Subject Name: Calculus

Time: 2:30 PM to 05:30 PM **Total Marks: 70**

Instructions:

1. Question No. 1 is compulsory. Attempt any four out of remaining Six questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 Objective Question (MCQ) Mark

Choose the appropriate answer for the following question.

07

- Infinite series $1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots$ is _____.
 - (A) Divergent (B) Convergent (C) Oscillation (D) None of these
- The series $x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} + \dots$ represent expansion of _____. 2.
 - $(A) e^{x}$
- (B) $\log (1 + x)$ (C) $\sin x$
- (D) cos x
- The value of the $\lim_{x\to 0} \left(\frac{\sin 2x}{x}\right) =$ _____.
 - (A) 2

- (B) 1 (C) -1 (D) $\frac{1}{2}$
- Asymptote parallel to y-axis of the curve $y = \frac{3x^2}{x-2}$ is the line _____.

 - (A) x = 0 (B) y = 0 (C) x = 2 (D) y = 2
- f(x) = |x| is _____ at origin. 5.

 - (A) continuous (B) discontinuous (C) differentiable (D) None of these
- Curve $y^2(a + x) = x^2(b x)$ is symmetric about _____.
- (A) x axis (B) y axis (C) line x = b (D) line x = -a
- The curve increases strictly in the interval in which $\frac{dy}{dx}$ ______. 7.
 - (A) < 0
- (B) > 0
- (C) = 0
- (D) None of these
- **(b)** Choose the appropriate answer for the following question.

07

- The values of $\int_0^\infty e^{-x} \cos(2x) dx =$ _____
- (B) $-\frac{1}{\epsilon}$ (C) $\frac{1}{\epsilon}$ (D) $\frac{2}{\epsilon}$
- What does the region $\int_1^2 \int_1^2 dx dy =$ _____.
- (A) rectangle (B) square
- (C) circle (D) triangle
- The values of the $\lim_{x \to \frac{\pi}{2}} \left(\frac{\cos x}{x \frac{\pi}{2}} \right) =$ _____.
 - (A) 0

- (B) 1 (C) -1 (D) $\frac{\pi}{2}$

	5.	The equation of the form $f(xy) = c$, then $\frac{dy}{dx} = $	
		(A) $-\frac{\mathbf{f}_{\mathbf{x}}}{\mathbf{f}_{\mathbf{y}}}$ (B) $\frac{\mathbf{f}_{\mathbf{x}}}{\mathbf{f}_{\mathbf{y}}}$ (C) $-\frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{f}_{\mathbf{x}}}$ (D) $\frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{f}_{\mathbf{x}}}$	
	6.	The values of $\int_0^1 \int_0^1 (3x^2 - 2y^2) dxdy$ is	
		(A) 0 (B) 1 (C) -1 (D) $\frac{1}{3}$	
	7.	If $x = u + 3v$, $y = v - u$ then the values of $\frac{\partial(x,y)}{\partial(u,v)}$ is	
		(A) 4 (B) -1 (C) 5 (D) 7	
Q.2	(a)	Expand log(sec x) in power of x.	04
	(b)	Evaluate $\lim_{x\to 0} \left(\frac{1^x+2^x+3^x}{3}\right)^{\frac{1}{x}}$.	03
	(c)	(i) Trace the curve $y^2(2a - x) = x^3$.	04
		(ii) determine $\int_0^3 \frac{1}{\sqrt{3-x}} dx$ converge or diverges.	03
Q.3	(a)	If $f(x,y) = x^2y + xy^2$ then find $f_x(1,2)$ and $f_y(1,2)$ by definition.	04
	(b)	Check the continuity for the following function at (0,0)	03
		$f(x,y) = \frac{2xy}{x^2 + y^2}, (x,y) \neq (0,0)$	
		= 0, $(x,y) = (0,0)$	
	(c)	(i) if $u = \sin^{-1}\left(\frac{x^{\frac{1}{4}} + y^{\frac{1}{4}}}{x^{\frac{1}{5}} + y^{\frac{1}{5}}}\right)$ then find the values of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ and	04
		$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.	
		(ii) if $u = \frac{e^{x+y+z}}{e^x + e^y + e^z}$ then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 2u$.	03
Q.4	(a)	Find the extreme values of $x^3 + 3xy^2 - 3x^2 - 3y^2 + 4$.	04
	(b)	Find the equation of the tangent plane and normal line to the surface $2x^2 +$	03
		$y^2 + 2z = 3$ at (2, 1, -3)	
	(c)	(i) Find a point on the plane $2x + 3y - z = 5$ which is nearest to the origin.	04
		(ii) Expaned e^{xy} in power of $x - 1$ and $y - 1$ using Taylor's expansion.	03

The function $f(x,y) = x^2y f(y/x)$ is homogeneous of degree is _____.

(D) 3

(C) 2

4.

(A) 0

(B) 1

Q.5 (a) Test for the convergence the series;
$$\frac{1}{1.2.3} + \frac{x}{4.5.6} + \frac{x^2}{7.8.9} + \dots$$

$$\sum_{n=1}^{\infty} \left[\sqrt[8]{n^3 + 1} - n \right]$$

$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{n^3 + 1}$$

(ii) Test the convergence for
$$5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \dots$$
 03

Q.6 (a) Evaluate
$$\iint r \sqrt{a^2 - r^2} dr d\theta$$
 over the upper half of the circle $r = a\cos\theta$.

- (b) Sketch the region of integration and evaluate $\int_{1}^{4} \int_{0}^{\sqrt{x}} \frac{3}{2} e^{\frac{y}{\sqrt{x}}} dy dx .$
- (c) (i) Evaluate the integral $\int_0^2 \int_{\frac{y}{2}}^1 e^{x^2} dxdy$ by changing the order of integration.

(ii) Evaluate the integral
$$\int_0^2 \int_1^z \int_0^{yz} xyz \, dxdydz$$
.

- **Q.7** (a) Find the area included between the curve $y^2(2a x) = x^3$ and its asymptote. 04
 - (b) Find the volume of a solid generated by revolving the cardioid $r = a(1 + \cos\theta)$ about the initial line.
 - (c) Use triple integration to find the volume of the solid within the cylinder $x^2 + y^2 = 9$ between the planes z = 1 and x + z = 1.

03 of 03
