Seat No.:	Enrolment No.
	

GUJARAT TECHNOLOGICAL UNIVERSITY

BE SEMESTER- 1st/2nd (NEW SYLLABUS) EXAMINATION – SUMMER 2015

•			2110015 Vector Calculu	s and Line	ear Alge	bra	Date:15/06/201	5
_	:10.3	80am-0	01.00pm		8		Total Marks: 7	'0
	2. N	Make su	n No. 1 is compulso itable assumptions to the right indicate	wherever ne		ut of remaining	Six questions.	
Q.1	(a) 1.		er the following Mangle between $\bar{u} = 0$		- nd v = (2	1 12) is		07
	_,				$v = (2, \frac{1}{2})$	-1,-1, <i>3)</i> IS		
		(b)	3 rad 3.68 rad	(d)	2 rad			
	2.	Which	h of the following	matrix is ort				
		(a)	$\begin{bmatrix} \sqrt{3}/2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{bmatrix}$	(c)	$ \begin{bmatrix} 1/9 \\ \sqrt{5}/9 \end{bmatrix} $			
		(b)	$\begin{bmatrix} 1 & -2 \end{bmatrix}$	(d)	[2 3]	- ' ' '		
		(0)	$\begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$	(4)	$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix}$			
	3.		uare matrix A is in					
	٠.	(a)	A					
			I	(d)	$oldsymbol{A}^{^{T}} oldsymbol{A}^{^{-1}}$			
	4.	` '	nogeneous system			east solu	tions	
		(a)	1	(c)	3	5010		
		(b)		(d)	4			
	5.	The ra	ank of $\begin{bmatrix} 1 & 3 & 6 \\ 2 & 1 & 6 \end{bmatrix}$	is				
		(a)		(c)	3			
		(p)	2	(d)	No rank			
	6.	(a)	the eigen value of 9	(c)	_	e of A + 3I is		
		(b)	6	(d)	27			
	7. Which of the following is a subspace of \mathbb{R}^2 under standard operations						perations	
			R^3		M_{22}			
		(b)	P_2	(d)	R 22			
	(b)		_	` '	Λ			07
	(b) Attempt the following MCQ1. If R is a vector space then which of the following is a trivial subspace of R?							U7
		(a)	$\{\overline{0}\}$			8	<u>.</u>	
		(b)	R	(d)	$\left\{ ar{0},ar{1} \right\}$ $\left\{ ar{1} \right\}$			
	2. The set $S = \{1, x, \chi^2\}$ spans which of the following?							
		(a)		(c)		C		
			M_{22}	(d)	R			
	3.	The dimension of the solution space of $x-3y=0$ is						
		(a)	1	(c)	3			
		(b)		(d)				
	4. The mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(v_1, v_2, v_3) = (v_1, v_2, 0)$ is called as							
		(a) I	Reflection Magnification		Rotation Projection			

```
(a) \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} (c) \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix} (b) \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} (d) \begin{bmatrix} 0 & 3 \\ 2 & 0 \end{bmatrix}
                  The divergence of \overline{F} = xyzi + 3\chi^2 yj + (x\chi^2 - y^2 z)k at (2,-1,1) is
                   (a) yz + 3x + 2xz (c) yz + 3\chi^2 + (2xz - y^2)

(b) yz + xy (d) xy - yz
                   If \overline{F} is conservative field then curl \overline{F} = \underline{\hspace{1cm}}
           7.
                   (a) i
                   (b) j
Q.2
            (a)
                                                                                                                                          03
                                                               orthogonal? If not, can it be converted into an
                   orthogonal matrix?
           (b) Solve the following system: x + y + z = 3, x + 2y - z = 4, x + 3y + 2z = 4.
                                                                                                                                          04
                   Find the rank of the matrix A = \begin{bmatrix} 1 & 2 & 4 & 0 \\ -3 & 1 & 5 & 2 \\ -2 & 3 & 9 & 2 \end{bmatrix}
        (c)(i)
                                                                                                                                          03
                   Find the inverse of A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix} using row operations.
           (ii)
                                                                                                                                          04
                 Does W = \{(x, y, z)/\chi^2 + y^2 + z^2 = 1\} a subspace of \mathbb{R}^3 with the standard
                                                                                                                                          03
Q.3
                                                                                                                                          04
                   Find the projection of u = (1,-2,3) along v = (2,5,4) in \mathbb{R}^3.
                   Find the eigen values and eigen vectors of the matrix A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}
            (c)
                                                                                                                                          07
Q.4
                                                                             solution
                                                                                                   for
            (a) Find
                                               least
                                                             square
                                                                                                               the
                                                                                                                            system
                                                                                                                                         03
                    4\chi_1 - 3\chi_2 = 12.2\chi_1 + 5\chi_2 = 32.3\chi_1 + \chi_2 = 21.
           (b) Determine the dimension and basis for the solution space of the system
                                                                                                                                        04
                   \chi_1 + 2\chi_2 + \chi_3 + 3\chi_4 = 0.2\chi_1 + 5\chi_2 + 2\chi_3 + \chi_4 = 0, \chi_1 + 3\chi_2 + \chi_3 - \chi_4 = 0.
            (c) Check whether V = \mathbb{R}^2 is a vector space with respect to the operations
                                                                                                                                          07
                   (u_1, u_2) + (v_1, v_2) = (u_1 + v_1 - 2, u_2 + v_2 - 3)
                                                                                                                                 and
                   \alpha(\mathcal{U}_1, \mathcal{U}_2) = (\alpha_{\mathcal{U}_1} + 2\alpha - 2, \alpha_{\mathcal{U}_2} - 3\alpha + 3), \alpha \in \mathbb{R}.
           (a) Consider the inner product space P_2. Let p_1 = a_2 x^2 + a_1 x + a_0 and
Q.5
                   \overline{p}_2 = b_2 x^2 + b_1 x + b_0 are in P_2, where \langle \overline{p}_1, \overline{p}_2 \rangle = a_2 b_2 + a_1 b_1 + a_0 b_0.
```

Find the angle between $2\chi^2 - 3$ and 3x + 5.

If $\langle u, v \rangle = 9_{\mathcal{U}_1 \mathcal{V}_1} + 4_{\mathcal{U}_2 \mathcal{V}_2}$ is the inner product on \mathbb{R}^2 then it is generated by

- (b) Find the rank and nullity of the matrix $A = \begin{bmatrix} 2 & 0 & -1 \\ 4 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix}$ and verify the
- (c) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by $T(\chi_1, \chi_2) = (\chi_2, -5\chi_1 + 13\chi_2, -7\chi_1 + 16\chi_2)$. Find the matrix for the transformation T with respect to the bases $B = \{(3,1), (5,2)\}$ for \mathbb{R}^2 and $B' = \{(1,0,-1), (-1,2,2), (0,1,2)\}$ for \mathbb{R}^3 .
- Q.6 (a) Find the arc length of the portion of the circular helix $r(t) = \cos ti + \sin tj + tk$ 03 from t=0 to $t=\pi$.

dimension theorem.

- (b) A vector field is given by $\overline{F} = (\chi^2 + x y^2)i + (y^2 + \chi^2 y)j$. Show that \overline{F} is irrotational and find its scalar potential.
- (c)(i) Let \mathbb{R}^3 have the Euclidean inner product. Transform the basis $\{(1,1,1),(1,-1,1),(1,-1,2,3)\}$ into an orthogonal basis using Gram-Schmidt process.
 - (ii) Express the following quadratic form in matrix notation: 02 $2 x^2 + 5 y^2 6 z^2 2xy yz + 8zx.$
- Q.7 (a) If $\phi = xyz 2y^2z + \chi^2z^2$, find $div(grad\phi)$ at the point (2,4,1).
 - (b) Use Green's theorem to evaluate $\oint_C [\chi^2 y dx + y^3 dy]$, where C is the closed path formed by y=x and $y=\chi^3$ from (0,0) to (1,1).
 - (c) Verify Stoke's theorem for $\overline{F} = (y-z+2)i + (yz+4)j xzk$ over the surface of the cube x=0, y=0, z=0, x=2, y=2, z=2 above the xy plane.(that is open at bottom)
