Seat No.:	Enrolment No.
Deat 110	Emoment 110

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III EXAMINATION – SUMMER 2016

	Subject Code:130002 Date:07/06		2016
	Time	ect Name:Advanced Engineering Mathematics e:10:30 AM to 01:30 PM Total Marks: 70 ections:	
		 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
Q.1	(a)	(i) Solve $xy \frac{dy}{dx} = 1 + x + y + xy$ (ii) Solve $\frac{dy}{dx} + \frac{1}{x} = \frac{e^y}{x^2}$	07
	(b)		07
Q.2	2 (a)	Using the method of separation of variables solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial v^2} = 0$	07
	(b)	(i) Solve $(D^3 + 4D)y = \sin 2x$. (ii) Solve $(D^2 + D)y = \frac{1}{1 + e^x}$	07
	(b)	(i) Solve $(D^2 - 6D + 9)y = x^2e^{3x}$. (ii) Solve $(D^2 - 4)y = x^2$	07
Q. 3	(a)	Find Fourier series for $f(x) = \pi x, 0 \le x \le 1$ $= \pi(2-x), 1 \le x \le 2.$	07
	(b)	Obtain Fourier series for $f(x) = e^{-x}$ in interval $0 < x < 2\pi$.	07
Q.3	(a)	Find Fourier series for $f(x) = 1 + \frac{2x}{\pi}, -\pi \le x \le 0$ $= 1 - \frac{2x}{\pi}, 0 \le x \le \pi.$	07
٠.	(b)	Obtain half range sine Fourier series for $f(x) = e^x$ in interval $0 < x < 1$	07
Q.4	(a)	Using Laplace transform solve the differential equation $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 5x = e^{-t} \text{ sint. where } x(0) = 0, x'(0) = 1$ Using convolution theorem find $L^{-1}(\frac{1}{(s^2+a^2)^2})$.	07
	(b)	Using convolution theorem find $L^{-1}(\frac{1}{(s^2+a^2)^2})$	07
2.4	(a)	i) Find $L \left(\frac{t-sin5t}{t}\right)$.	07
		(ii) Find L (t^2cos^22t) .	1

	(b)	(i) Find $L^{-1}(\frac{1-3s}{s^2+8s+21})$.	. 07
		(ii) Find $L^{-1}\{\log\left(\frac{s+a}{s+b}\right)\}$	
Q.5	(a)	(i) Define (1) Heaviside's unit step function (2) Signum function.	07
	(b)	(ii) Form partial differential equation for $z = f(ax + y) + g(ax - y)$ Find the fourier transform of $f(x) = \frac{1}{x}$	07
~ -		OR	07
Q.5	(a)	(i) Solve $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$ (ii) Find the complete integral of $p^2 = q + x$	
	(b)	(i) Solve $\frac{\partial^2 z}{\partial x^2} + z = 0$ given that when $x = 0$, $z = e^y$ and $\frac{\partial z}{\partial x} = 1$ (ii) Using Charpit's method solve $z = px + qy + p^2 + q^2$	07