Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY BE – SEMESTER – VIII(OLD) • EXAMINATION – WINTER 2017

Subject Code: 180505 Date: 15 Subject Name: Multicomponent Distillation						: 15-11-2017		
Ti Inst	ne: 0	2:30 pm to 05:0	00 pm		Total M	arks: 70		
	1. 2. 3.	Attempt all quests Make suitable ass Figures to the rig	ions. Sumptions whereve ht indicate full ma	er necessary. rks.				
Q.1	(a)	Define following: Light key compo distributed compo	nent, Heavy key nent. Non kev cor	component, Sp nponent and Opt	olit key, Adjac imum reflux ra	cent key, Non ntio.	07	
	(b)	Explain the fixing	of operating pres	sure in distillatio	n column.		07	
Q.2	(a) (b)	What are the selection criteria between packed column and tray column? Write the steps for distillation column design. OR						
	(b)	 A distillation column is to separate 4750 mol/h of feed composed of 37% n- butane, 32% iso-pentane, 21% n-pentane and 10% n-hexane. The column operates at an average pressure of 2 atm a and will produce a distillate product containing 95% n-butane and 5% iso-pentane. The bottom product is allowed to contain no more than 570 mol/h of n-butane. The minimum reflux ratio is 1.45. The average relative volatility of light key component is 2.567. (a) Complete the material balance over still. (b) Calculate number of theoretical stages required for desired separation by FUG method. 						
Q.3	(a) (b)	Explain Jet flooding, Down comer flooding in detail What are the parameters on the basis of which various types of trays selected explain in detail?					07 07	
0.1	(-)	OR					07	
Q.3	(a)	industrial application.						
	(b)) Discuss Equation-Tearing Procedure using Tridiagonal matrix algorithm multicomponent distillation.						
Q.4	(a) (b)	What is sequencing of distillation column? Explain it with industrial examples.07Explain Lewis Matheson method in detail.07						
Q.4	(a)	A saturated liquid, consisting of phenol and cresols with some xylenols, is fractioned to give a top product of 95.3 mole % phenol. Metacresol is heavy key and phenol is light key component. Total condenser is used. The compositions of the top product and of the phenols in the bottoms are given.						
		Component	Average Relative Volatility	Feed, mole %	Distillate, mole %	Residue, mole %		
		Phenol	1.98	35	95.3	5.24		
		O-cresol	1.59	15	4.55	?		
		m- cresol	1.00	30	0.15	?		
		Ayielluis	0.39	20		<i>.</i>		

(a) Complete the material balance over still for the feed rate of 1000 kmol/h.(b) Calculate minimum reflux ratio by Underwood's method.

	(b)	Describe determination of optimum reflux ratio.	07
Q.5	(a)	Explain energy saving in thermally coupled distillation column.	07
	(b)	Explain Theile- Geddes method in detail.	07
		OR	
Q.5	(a)	Discuss batch distillation with rectification.	07
-	(b)	Discuss energy saving in distillation column by heat integration.	07